1. The figure above shows the graph of f'', the derivative of f, on the closed interval $-1 \leq x \leq 5$. The graph of f'' has horizontal tangent lines at $x = 1$ and $x = 3$. The function f is twice differentiable with $f(2)=6$.

(a) Find the x-coordinate of each of the points of inflection of the graph of f. Give a reason for your answer.
(b) At what value of x does f have a relative minimum value. Give a reason for your answer.
(c) State the interval(s) on which the graph of f is decreasing. Give a reason for your answer.
(d) Let g be the function defined by $g(x)=xf(x)$. Find an equation for the line tangent to the graph of g at $x = 2$.

2. Consider the function $f(x) = x\sqrt{k-x}$, where k is a real number.

a. Find $f'(x)$ and $f''(x)$.

b. For what constant k does $f(x)$ have a relative maximum at $x = 2$.
3. Let \(f \) be a function with a second derivative given by \(f''(x) = x^2(x - 3)(x - 6) \). What are the \(x \)-coordinates of the points of inflection of the graph of \(f \)?

(A) 0 only
(B) 3 only
(C) 0 and 6 only
(D) 3 and 6 only
(E) 0, 3, and 6

<table>
<thead>
<tr>
<th>(x)</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g'(x))</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

4. The derivative \(g' \) of a function \(g \) is continuous and has exactly two zeros. Selected value of \(g' \) are given in the table above. If the domain of \(g \) is the set of all real numbers, then \(g \) is decreasing on which of the following intervals?

(A) \(-2 \leq x \leq 2\) only
(B) \(-1 \leq x \leq 1\) only
(C) \(x \geq -2\)
(D) \(x \geq 2\) only
(E) \(x \leq -2\) or \(x \geq 2\)

5. The radius of a sphere is decreasing at a rate of 2 centimeters per second. At the instant when the radius of the sphere is 3 centimeters, what is the rate of change, in square centimeters per second, of the surface area of the sphere? (The surface area \(S \) of a sphere with radius \(r \) is \(S = 4\pi r^2 \).)

(A) \(-108\pi\)
(B) \(-72\pi\)
(C) \(-48\pi\)
(D) \(-24\pi\)
(E) \(-16\pi\)

6. Let \(f \) be the function with derivative given by \(f'(x) = \sin(x^2 + 1) \). How many relative extrema does \(f \) have on the interval \(2 < x < 4? \)

(A) One
(B) Two
(C) Three
(D) Four
(E) Five
7. Let f be a twice-differentiable function such that $f(2) = 5$ and $f(5) = 2$. Let g be the function given by $g(x) = f(f(x))$.

(a) Explain why there must be a value c for $2 < c < 5$ such that $f'(c) = -1$.

(b) Show that $g'(2) = g'(5)$. Use this result to explain why there must be a value k for $2 < k < 5$ such that $g''(k) = 0$.

(c) Show that if $f''(x) = 0$ for all x, then the graph of g does not have a point of inflection.

(d) Let $h(x) = f(x) - x$. Explain why there must be a value r for $2 < r < 5$ such that $h(r) = 0$.